Distributionally robust uncertainty quantification via data-driven stochastic optimal control
نویسندگان
چکیده
This paper studies optimal control problems of unknown linear systems subject to stochastic disturbances uncertain distribution. Uncertainty about the is usually described via ambiguity sets probability measures or distributions. Typically, requires knowledge underlying dynamics and as such challenging. Relying on a fundamental lemma from data-driven framework polynomial chaos expansions, we propose an approach reformulate distributionally robust with conic programs in finite-dimensional vector space. We show how construct these previously recorded data relax program numerically tractable convex appropriate sampling The efficacy our method illustrated numerical example.
منابع مشابه
Stochastic Optimal Power Flow Based on Data-Driven Distributionally Robust Optimization
We propose a data-driven method to solve a stochastic optimal power flow (OPF) problem based on limited information about forecast error distributions. The objective is to determine power schedules for controllable devices in a power network to balance operation cost and conditional valueat-risk (CVaR) of device and network constraint violations. These decisions include scheduled power output a...
متن کاملData-Driven Distributionally Robust Control of Energy Storage Systems
Energy storage is an important resource that can balance fluctuations in energy generation from renewable energy sources, such as wind, to increase their penetration. Many existing storage control methods require perfect information about probability distribution of uncertainties. In practice, however, the distribution of renewable energy production is difficult to reliably estimate. To resolve...
متن کاملData-driven Distributionally Robust Polynomial Optimization
We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polyno...
متن کاملDistributionally Robust Stochastic Programming
Abstract. In this paper we study distributionally robust stochastic programming in a setting 7 where there is a specified reference probability measure and the uncertainty set of probability mea8 sures consists of measures in some sense close to the reference measure. We discuss law invariance of 9 the associated worst case functional and consider two basic constructions of such uncertainty set...
متن کاملDistributionally Robust Stochastic Programming
Abstract. In this paper we study distributionally robust stochastic programming in a setting 7 where there is a specified reference probability measure and the uncertainty set of probability mea8 sures consists of measures in some sense close to the reference measure. We discuss law invariance of 9 the associated worst case functional and consider two basic constructions of such uncertainty set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Control Systems Letters
سال: 2023
ISSN: ['2475-1456']
DOI: https://doi.org/10.1109/lcsys.2023.3290362